
BookBook
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors
Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Topics to be discussed Topics to be discussed
02

• Algorithm to implement threaded binary tree

• Program to implement Huffman Algorithm

• To find the position of a given element and its parent in a

Binary Search Tree.

• To insert a given element into a Binary Search Tree.

• To delete a given element from the Binary Search Tree.

• To find the smallest element in a Binary Search Tree.

• To find the largest element in a Binary Search Tree.

• Expression Trees

• Reconstruction of Binary Trees

2

Threaded Binary TreeThreaded Binary Tree

A binary tree with thread(s) is known as threaded binary tree. In a

threaded binary tree a know may contain pointer to its child node or

thread to some higher node in the node. The higher node to which

the thread points in the tree is determined according to the tree

traversal technique used (i.e. preorder, inorder, postorder).

There are three methods to apply thread binary tree. Each method

corresponds to a particular type of tree traversal:

Preorder threading: on this, the threads are applied to the higher

node containing the preorder traversal of the tree.

Inorder threading: the threads are applied considering the inorder

traversal.

Postorder threading: the thread are applied consider the postorder

traversal.

03

3

Types of threaded binary treeTypes of threaded binary tree

Depending on the type of threading, there are two types of

threaded binary tree:

One-way Threading Two-way Threading

04

4

OneOne--way Threadingway Threading

In this, a thread appears either in the right link field or in the left

link field of the node. Is the thread appears in the right link filed

of the node then points to the next node in the inorder traversal of

the tree i.e. it points to the in order successor of the node. Such

tree is known as right threaded binary tree.

If the thread appears in the left link field of the node. It points to

the preceding node in the inorder traversal of the tree. Such a tree

is known as left threaded binary tree. As, the threading is done

according to the inorder traversal, hence the tree is referred as in-

threaded binary tree.

05

5

A

B X C

D X E

X G X H

F X

X I

ROOT

Right threaded binary tree

06

6

A

B C

D X E

X G X H X

F X

I X

ROOT

Left threaded binary tree

07

7

TwoTwo--way Threadingway Threading

To obtain a two-way threaded binary tree the right link field

containing null is replaced by a thread pointing to the inorder

successor of the node and the left link filed containing null is

replaced b a thread pointing to the inorder predecessor of the

node.

Observe that all the left pointer containing null have been

replaced by threads accept the left pointer of G. which is the

first node in the inorder traversal of tree T.

Similarly, all the right pointer containing null have been

replaced by threads accept the right pointer of F. which is the

last node in the inorder traversal of tree T.

08

8

A

B C

D E

X G H

F

I

ROOT

Two way threaded binary tree

09

9

Huffman Algorithm

Motivation

• Huffman coding is a method for the construction of minimum

redundancy codes.

• Applicable to many forms of data transmission. Example:

text files.

10

10

• This problem is that of finding the minimum length bit string

which can be used to encode a string of symbols.

• An encoding for each character is found by following the tree

from the route to the character in the leaf: the encoding is the

string of symbols on each branch followed.

Example :

String Encoding

AST 00 001 110

PRA 10 11 00

PST 10 001 110

RAS 11 00 001

Coding : Problem Definition

A P

S T

R

0

0 0

0

1

1 1

1

11

11

Example: fixed-length prefix code (1)

a b c d e f

0 1

0

0

0

0 0

1

11

Message: 000.001.000.011.100.101 abadef

1

12

12

Example: variable-length prefix code (2)

Message: 0.101.0.111.1101.1100

ef

d
0 1

100 101

1100 1101

111

c b

0 1

0

0 11

a
1

0

13

13

Algorithm to make Huffman Tree

• Scan the message to be encoded, and count the frequency

of every character.

• Create a single node tree for each character and its

frequency and place into a priority queue (heap) with the

lowest frequency at the root.

• Until the forest contains only 1 tree do the following:

• Remove the two nodes with the minimum frequencies

from the priority queue (we now have the 2 least

frequent nodes in the tree).

• Make these 2 nodes children of a new combined node

with frequency equal to the sum of the 2 nodes

frequencies.

• Insert this new node into the priority queue.

14

14

Start :

Put the symbols along with their frequency in increasing /

decreasing order as shown below :-

e:9f:5 c:12 b:13 a:45d:16

Huffman Code : Example(1)
15

15

Step 1 : Add the frequencies e & f and rerank everything so

that items are still in sorted order.

e:9 f:5

c:12 b:13 d:16 a:4514

0 1

Huffman Code : Example(2)
16

16

Step 2 : Add the frequencies c & b and rerank everything to

have it in a sorted order.

d:16 a:45

Huffman Code : Example(3)

e:9 f:5

14
10

b:13c:12

25
10

17

17

a:45

Huffman Code : Example(4)

b:13c:12

25

0 1

e:9 f:5

d:1614

30
0

0

1

1

Step 3: Add the tree of e & f with d and rearrange them in a sorted

order.

18

18

Huffman Code : Example(5)

b:13c:12

25

e:9 f:5

d:1614

30

55a:45

0 1

1 1

1

0 0

0

Step 4 : Now, add the tree of c & b with the tree of e, f & d. Re-rank

them in a sorted order.

19

19

Step 5 : At last, combine the tree formed with a. And hence the

Huffman tree is formed.

Huffman Code : Example(6)

0

b:13c:12

25

e:9 f:5

d:1614

30

55a:45

100

0 1

0 0

0

1

1

1

0

100

1

101

1100 1101

111

20

20

Result : Codes for the variables :-

a : 0

b : 100

c : 101

d : 111

e : 1100

f : 1101

Hence, no code is the prefix of another code.

Huffman Code : Example(7)

21

21

• Operations on binary search tree:

• Searching a particular element in BST

• Insertion of an element

• Deletion of an element

• Finding the smallest element

• Finding the largest element

Binary Binary Search Search TreesTrees

22

22

Binary Search TreeBinary Search Tree

A BST is a Binary Tree in which

•data is managed in a logical way.

•node containing the data has the following constraints:

• Each data element in the left subtree is less than its

root element.

• Each data element in the right subtree is greater than

or equal to its root element.

• Both the left and right subtree of the root will be again

a BST.

23

23

Binary Search Tree(continued)

The binary tree shown is binary search tree.

When this BST is traversed in in-order manner, it produces a sorted list

of data elements. The list is given as:

10 20 25 30 40 50 70 100 200

50

100

2004020 70

10

30

25

24

24

Operations on Binary Search Tree

Various operations that can be performed on binary search

tree are:

• Searching a particular key element.

• Inserting an element.

• Deletion of an element.

• Finding the smallest element.

• Finding the largest element.

25

25

• Compare the element to be searched with the value of root.

• If both are same , stop the search.

• If its value is less than root, follow the left subtree and

• If its value is larger than the root, follow the right subtree.

• Repeat this procedure recursively until we find the desired

element.

• If not found then conclude that element is not present in the

binary search tree.

Searching of a particular key value in BST
26

26

Algorithm to search a particular value in BST

BSTSearch(Root,Item,Position,Parent)

Step1: If Root=Null Then

set Position = null

set Parent = null

Return

[End If]

Step 2: Pointer=Root And Pointer P = Null

Step 3: Repeat Step 4 While Pointer != Null

Step 4: If Item = PointerInfo Then

set Position = Pointer

set Parent = PointerP

Return

Step 5: Else If Item<PointerInfo Then

.

27

27

set PointerP = Pointer

set Pointer = PointerLeft

Else

set PointerP = Pointer

set Pointer = PointerRight

[End If]

[End Loop]

Step 5: Set Position =Null And Parent = Null

Step 6: Return

Algorithm (continued)
28

28

Insertion of a particular key value in BST

Consider the following BST and insert the element 10 into it.

40

80

7

90

15

60

18

10022

30

40

>10

>10

<10

10

29

29

Step 1: If Free = Null Then

Print: “No space is available for the node to insert”

Exit

Else

Allocate memory to new node for insertion

(New = Free And Free = Free Right)

Set NewInfo= Item

Set Newleft= Null And NewRight= Null

[End if]

Step 2: If Root= Null Then Set Root= New

Exit

[End If]

Step 3: If Item >= Root Info Then

Set Pointer=Root Right

Set PionterP= Root

Algorithm to insert a given element
30

30

Algorithm to insert a given element(continued)

Else

Set Pointer=Root Left

Set PionterP= Root

[End If]

Step 4: Repeat step 5 while Pointer !=Null

Step 5: If Item >=Pointer Info Then

Set PionterP=Pointer

Set Pointer=Pointer Right

Else

Set PionterP=Pointer

Set Pointer=Pointer Left

[End If]

[End Loop]

31

31

Step 6: If Item< PointerPInfo Then

Set PointerPLeft=New

Else

Set PointerPRight= New

[End If]

Step 7: Exit

32

32

• Complexity of Insertion Process = O(h) where h is the

height of BST.

• If BST is complete binary tree or almost complete binary

tree then,

• Complexity of the Insertion Process = O(log2n).

Complexity of Insertion ProcessComplexity of Insertion Process
33

33

Deletion of a node from binary search treeDeletion of a node from binary search tree

• Firstly locate the node containing the element to be

deleted and also locate its parent node.

• There are three cases of deletion :

Case 1. where the node to be deleted is a leaf node.

Case 2.where it has one child.

Case3. where it has 2 children.

34

34

Deletion of a node from binary search treeDeletion of a node from binary search tree

Consider the following BST as an example to understand all

the cases.
50

40

30 45 10060

35 12020

43

90

55 7042

32

95

92 97

35

35

Deletion of a node from binary search treeDeletion of a node from binary search tree

CASE 1: Node to be deleted is a leaf node.

Here , in the binary search tree shown, the leaf nodes are 20, 32, 43,

55, 70, 92, 97 and 120,

And it is very simple to delete them by changing the respective

pointer in their parent node to Null.

36

36

Deletion of a node from binary search treeDeletion of a node from binary search tree

50

40 90

30

55

60 100

70 95 12035

45

4220

9792
32

CASE 2: It has one child.

For example in this BST Delete the element 45 which has one

child. After deletion tree is shown as:

43

37

37

Deletion of a node from binary search treeDeletion of a node from binary search tree
CASE 3: It has two children.

Here we have to find the in-order successor of the node to be

deleted.

Because In-Order successor of any node having two children

can have one or zero child and cannot have any left subtree.

38

38

Deletion of a node from binary search treeDeletion of a node from binary search tree

50

40 90

30

55

60 100

70 95 120
35

45

4220

979232

Consider the following example:

Delete the node containing the element 100 which has 2 children.

Node to be

deleted

43

In-order

Successor of the

node

39

39

Deletion of a node from binary search treeDeletion of a node from binary search tree

50

40 90

30

55

60 100

70 95 12035

45

4220

979232

Consider an another example having two children:

Now delete the node containing the element 40.

43

Node to be

deleted

In-order successor

of the node

40

40

DeleteItem(Root, Item)

Step1: Call BSTSearch (Root, Item, Position, Parent)

Step2: If Position=Null Then

Print:"Item not found in the tree"

Exit

[End if]

Step 3: If Position Left != Null And Position Right

!=Null

Then

Call Delete2(Root, Position, Parent)

Else

Call Delete1(Root, Position ,Parent)

[End If]

Algorithm to delete a given elementAlgorithm to delete a given element
41

41

Algorithm to delete a given element

Step 4: Deallocate memory held by node Position

(Set PositionRight = Free And Free=Position)

Step 5: Exit

BSTSearch() algorithm has already been explained

Refer this sub algorithm from there.

42

42

Algorithm to delete a given element

The below Sub-algorithm delete a node having zero or one

child from the binary search tree.

Delete1(Root, Position, Parent)

Step1: If PositionLeft=Null And PositionRight= Null

Then

Set Temp= Null

Else If Position Right!=Null Then

Set Temp = PositionRight

Else

Set Temp =PositionLeft

[End If]

Step 2: If Parent= Null Then

Set Root= Temp

Else If Position= ParentLeft Then

43

43

Algorithm to delete a given element

Set ParentLeft=Temp

Else

Set ParentRight=Temp

[End If]

Step 3: Return

44

44

Algorithm to delete a given element

The below sub-algorithm delete a node having two children

from the binary search tree.

Delete2(Root, Position, Parent)

Step1: Set Pointer = Position Right And PointerP=Position

Step2 : Repeat while Pointer Left !=Null

Set PointerP=Pointer And Pointer= PointerLeft

[End Loop]

Step3: Set Successor =Pointer And PSuccessor=PointerP

Step4: Call Delete(Root,Successor,PSuccessor)

Step5: If Parent != Null Then

If Position =ParentThen

Set ParentLeft =Successor

Else

45

45

Algorithm to delete a given element

Set ParentRight =Successor [End If]

Else

Set Root=Successor

[End If]

Step6: Set SuccessorLeft=PositionLeft

Step7: Set SuccessorRight =PositionRight

Step8: Return

46

46

Finding the smallest element in BST

• As in BST every left node is smaller than right node in

each subtree of BST.

• Therefore to find the smallest element in BST we will

have to traverse the left most node of the BST.

47

47

Finding the smallest element in BST

Consider the following BST as an example:

50

40 70

35 42 75

38 6830

65

<50

<40

<35

>40

>35

>50

<70 >70

>65

Hence the lefttmost node of the tree contain the smallest element

i.e 30

Smallest

Element

48

48

Algorithm to find the smallest element in BST

Step1: If Root=Null Then

Print “ Tree is Empty”

Exit

Else

Set Pointer= Root

[end if]

Step2: Repeat while Pointer Left= Null

Set Pointer= Pointer Left

[End Loop]

Step3: Set Min=PointerInfo

Step4: Print : Min

Step5: Exit

49

49

Complexity to find the smallest element in BST

• The complexity of finding the smallest element is

dependent upon the height of the binary search tree.

• So, if the height of the left leg of the tree is highest then

the worst case complexity will be O(h).

• In case the binary search tree is complete or almost

complete binary search tree with n elements, the

complexity of finding the smallest element will be

O(log2n).

50

50

Finding the largest element in BST

• As in binary search tree every right node is smaller

than left node in each subtree of BST.

• Therefore to find the largest element in BST we will

have to traverse the right most node of the BST .

51

51

Finding the largest element in BST

Consider the following BST as an example:

Hence the rightmost node of the tree contain the largest element

i.e 75

50

40

4235 65

38

70

68

75

30

Largest

element

<50 >50

>70<70

<75

<40 >40

<35 <35

52

52

Algorithm to find the largest element in BST

Step1: If Root=Null Then

Print “ Tree is Empty”

Exit

Else

Set Pointer= Root

[end if]

Step2: Repeat while Pointer Right= Null

Set Pointer= Pointer Right

[End Loop]

Step3: Set Max=PointerInfo

Step4: Print : Max

Step5: Exit

53

53

• The complexity of finding the largest element is dependent

upon the height of the binary search tree.

• So, if the height of the right leg of the tree is highest then

the worst case complexity will be O(h).

• In case the binary search tree is complete or almost

complete binary search tree with n elements, the

complexity of finding the largest element will be

O(log2n).

Complexity to find the largest element in BST
54

54

Expression TreesExpression Trees

• An expression tree for an arithmetic, relational, or

logical expression is a binary tree in which :

• The parentheses in the expression do not appear.

• The leaves are the variables or constants in the

expression.

• The non-leaf nodes are the operators in the expression :

• A node for a binary operator has two non-empty

subtrees.

• A node for a unary operator has one non-empty

subtree.

55

55

Example of Expression TreeExample of Expression Tree

Inorder Traversal ResultExpression TreeExpression

a + 3(a+3)

3+4*5-9+63+(4*5-(9+6))

log xlog(x)

n !n!

+

3a

+

-3

*

54

+

69

log

x

!

n

56

56

Why Expression Trees?Why Expression Trees?

• Expression trees are used to remove ambiguity in expressions.

• Consider the algebraic expression 2 - 3 * 4 + 5.

• Without the use of precedence rules or parentheses, different

orders of evaluation are possible :

((2-3)*(4+5)) = -9

((2-(3*4))+5) = -5

(2-((3*4)+5)) = -15

(((2-3)*4)+5) = 1

(2-(3*(4+5))) = -25

• The expression is ambiguous because it uses infix notation :

each operator is placed between its operands.

57

Why Expression trees? (contd.)Why Expression trees? (contd.)

• Storing a fully parenthesized expression, such as ((x+2)-

(y*(4-z))), is wasteful, since the parentheses in the expression

need to be stored to properly evaluate the expression.

• A compiler will read an expression in a language like Java,

and transform it into an expression tree.

• Expression trees impose a hierarchy on the operations in the

expression. Terms deeper in the tree get evaluated first. This

allows the establishment of the correct precedence of

operations without using parentheses.

• Expression trees can be very useful for:

• Evaluation of the expression.

• Generating correct compiler code to actually compute

the expression's value at execution time.

• Performing symbolic mathematical operations (such as

differentiation) on the expression.

58

58

Expressing an ExpressionExpressing an Expression

Expressions can be expressed by using three

notations. These are :

• Prefix Notation

• Infix Notation

• Postfix Notation

59

59

Prefix NotationPrefix Notation

• A preorder traversal of an expression tree yields the prefix (or

polish) form of the expression.

• In this form, every operator appears before its operand(s).

For Example , Consider the tree :

Prefix Notation : + a * - b c d

+

*a

d-

cb

60

60

Infix NotationInfix Notation

• An inorder traversal of an expression tree yields the infix

form of the expression.

• In this form, every operator appears between its operand(s).

For Example , Consider the tree :

Infix Notation : a + b - c * d

+

*a

d-

cb

61

61

Postfix NotationPostfix Notation

• An postorder traversal of an expression tree yields the postfix

form of the expression.

• In this form, every operator appears after its operand(s).

For Example , Consider the tree :

Postfix Notation : a b c - d * +

+

*a

d-

cb

62

62

Prefix, Infix, and Postfix Forms (contd.)Prefix, Infix, and Postfix Forms (contd.)

Postfix forms Infix formsPrefix formsExpression

a b +a + b+ a b(a + b)

a b c * -a - b * c- a * b ca - (b * c)

x loglog xlog xlog (x)

n !n !! nn !

63

63

Expression Tree Example (1)Expression Tree Example (1)

Consider the expression (a + b) * c. The postfix expression is:

a b + c *

Step 1 : The first tow symbols are operands, so we create one-

node trees and push pointers to them onto a stack.

a b

Stack

64

64

Expression Tree Example (2)Expression Tree Example (2)

Step 2 : Next, we read '+' so two pointers to trees are popped, a

new tree is formed, and a pointer to it is pushed onto the stack.

a b

+

Stack

65

65

Expression Tree Example (3)Expression Tree Example (3)

Step 3 : Next, c is read, and a one-node tree is created and a pointer

is pushed onto the stack:

a b

+

c

Stack

66

66

Expression Tree Example (4)Expression Tree Example (4)

Step 4 : Finally, the last symbol '*' is read, two trees are merged,

and a pointer to the final tree is pushed onto the stack.

a b

c

*

+

Hence, the Expression Tree.

67

67

..

Reconstruction of Binary TreesReconstruction of Binary Trees

• Consider the pre-order and in-order traversal of binary tree

given below:-

• In-order Traversal : g d b h e i a f c

• Pre-order Traversal : a b d g e h i c f

Here, we will construct binary tree from these traversals.

• As in pre-order traversal ,the first element is always the root of

the tree . So, the root of the tree is a.

• After determining the root, we have to find the nodes which

will form left sub tree and right sub tree of the root.

68

68

• In in-order traversal, root of tree lies between nodes

forming left sub tree and right sub tree .

• Therefore, after looking at node a in the in-order

traversal, we find that the elements g , d , b , e , i form

left sub tree and the elements f , c form right sub tree.

• The separation of elements forming left and right sub

trees are shown below :

Left sub

tree

In-order : g d b h e i a f c

root

Right S-T

69

69

.
Pre-order : a b d g e h i c f

a

g d b h e i f c

Root

Left S-T
Right

S-T

70

70

• At this stage , the partial tree can be constructed as shown

above;

• In the next stage ,we will construct the left sub tree with the

elements of the left sub tree whose in-order and pre-order

traversals are given below:

• in-order traversal: g d b h e i

• pre-order traversal: b d g e h i

• By analyzing pre-order , b is the root of left sub tree and after

looking for the element b in in-order , we find elements g , d
form the left sub tree and the elements h , e , i form the right

sub tree of the tree rooted at b as shown below;

71

71

.

root

Left S-T
root

Right S-T

Left S-T Right S-T

72

72

• At this stage partial binary tree can be constructed as

shown above:

• Now following the same procedure for left sub tree of

node b whose in-order and pre-order traversals are:

• in-order traversal : g d

• e-order traversal : d g

• From pre-order traversal , d is the root of sub tree and

looking for this element d in in-order traversal,

• we find that the element g form the left sub tree and

there is no element in the right sub tree of the element

d as shown below;

73

73

.

In-order : g d

root
Left S-T

Pre-order : d g

Left S-T
root

a

b f c

d e h
i

g

74

74

• At this stage the partial binary tree can be constructed as shown

above ;

• Now the left sub tree of node b has been constructed .

The same procedure applied to elements e ,h ,i which

belongs to the right sub tree of node b and whose in-order and

pre-order traversals are :

 In-order traversal : h e i

 Pre-order traversal :e h i

• From the pre-order traversal , e is the root of this sub tree and

looking for this element in in-order traversal , we find that the

element h form the left sub tree and the element i form the right

sub tree as shown below ;

75

75

.
In-order : h e i

Left ST
ro

ot

Right ST

Pre-order : e h i

root left
right

a

b f c

d e

g h i

76

76

• At this stage the binary tree will look like as shown in

figure above ;

• Now only a right sub tree of root element a is

remaining whose in-order and pre-order traversals

are:

In-order traversal: f c

Pre-order traversal : c f

• Here ,from pre-order traversal , c is the root of this

sub tree and looking for this element in in-order

traversal , we find that element f from the left sub tree

and there is no element on the right of element c as

shown below :

77

77

.
In-order : f c

Left ST
ro

otPre-order : c f

root left

a

b

d e

g h i

c

f

78

78

• Hence , the required binary tree is constructed from

its traversals.

• Similarly we can construct the binary tree from its in-

order and post-order traversals.

79

79

